tandis que la Fig. 4 montre la projection sur le plan bc de l'ensemble de ces groupements.

Référence

Ce composé est à notre connaissance le seul monophosphate acide connu dans le système $NiO-Na_{1}O-P_{2}O_{4}-H_{1}O$.

PREWITT, C. T. (1966). SFLS-5. A Fortran IV Full-Matrix Crystallographic Least-Squares Program.

Acta Cryst. (1978). B34, 20–22

Données Cristallochimiques et Structure Cristalline du Trimétaphosphate: $CdK_4(P_3O_9)_2.2H_2O$

PAR M. T. AVERBUCH-POUCHOT

Laboratoire de Cristallographie, CNRS, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 30 juin 1977, accepté le 13 juillet 1977)

The trimetaphosphate CdK₄(P₁O₉), 2H₂O is triclinic, space group P_1^{\uparrow} , with one formula unit in a cell with a =9.235(5), b-7.599(4), c-7.148(4)Å, $\alpha = 96.38(1), \beta = 103.90(1), \gamma = 102.06(1)^{\circ}$. The cations link the P_3O_9 ring anions in three dimensions. The final R value is 0.04.

Préparation chimique

CdK₄(P₃O₉)₂.2H₂O a été préparé en utilisant la méthode décrite par Boullé (1938), pour la préparation du trimétaphosphate de calcium. L'introduction de chlorure de cadmium et potassium dans une suspension d'Ag₃P₃O₉.H₂O dans l'eau, les trois sels étant en proportion stoechiométrique, provoque la précipitation de chlorure d'argent et la libération des ions P₃O₉ dans la solution. Après filtration, l'évaporation lente de la solution, à la température ambiante, provoque la formation de cristaux de $CdK_4(P_3O_9)_2.2H_2O_1$

Données expérimentales

Le cristal utilisé était une plaquette épaisse de dimensions: $0.08 \times 0.13 \times 0.16$ mm. Les intensités de 2738 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre Philips PW 1100 fonctionnant, avec monochromateur, à la longueur d'onde $K\alpha$ de l'argent. Les conditions de mesure sont les suivantes: domaine angulaire: $3-26^{\circ}$ (θ), mode balayage: ω , largeur de balavage: 1.60° , vitesse de balavage: 0.02° s⁻¹.

En raison des dimensions suffisamment petites du cristal et de longueur d'onde choisie, aucune correction d'absorption n'a été nécessaire. Un affinement par moindres carrés de quelques valeurs angulaires obtenues à l'aide du diffractomètre automatique conduit à la maille triclinique donnée dans l'abstract. Cette maille diffère quelque peu de celle trouvée [a = 9,219 (4), b =7,588 (4), c = 7,133 (4) Å, $\alpha = 96,42$ (1), $\beta =$

 $103,91(1), \gamma = 102,08(1)^{\circ}$ à partir des valeurs angulaires relevées sur un diagramme de poudre fait sur diffractomètre Philips à la longueur d'onde $K\alpha$ du cuivre, à la vitesse de $\frac{1}{8}^{\circ}$ (θ) min⁻¹.

Le Tableau 1 donne le dépouillement de ce diagramme.

Tableau 1. Dépouillement d'un diagramme de poudre $de \operatorname{CdK}_4(P_3O_9)_2.2H_2O$

hkl	$d_{\rm cal}$	d_{obs}	I_{obs}	hkl	d_{cal}	d_{obs}	$I_{\rm obs}$
100	8,68	8,66	18	211	3,345)	2 242	20
010	7,31	7,30	40	121	3,340)	3,342	30
001	6,82			012	3,316	3,314	17
110	6,42	6,41	100	201	3,280	3,281	19
10 Î	6,25			1 I Ž	3,268	3,270	17
01Ī	5,48	5,47	5	2 Ž 0	3,209	3,208	9
110	5,02			Ī 2 1	3,183	3,185	6
111	4,80	4,80	74	121	3.128)	2 1 20	75
101	4,77	4,77	24	2 O Ž	3,125)	3,129	25
11Ī	4,70	4,70	12	120	3.107	3,110	31
011	4,61	4,61	16	Ī 1 2	3.078		
111	4,56	4,56	13	021	3,015	3.015	9
200	4,34	4,34	13	30 Ī	2,968)	2 064	
20 Î	4,21	4 21	20	Ž 2 1	2.963Ĵ	2,904	33
210	4,215	4,21	50	112	2,950		
211	3,881	3,881	8	3 İ O	2,947		
120	3,709	3,708	42	311	2.937		
020	3,656			102	2.916	2012	20
111	3,599	3,599	3	012	2,907∫	2.912	29
102	3,516	3,516	4	Ž 1 2	2.894)	2 806	20
021	3,479			300	2.892∫	2,090	30
2 I İ	3,459	3,460	8	212	2.853		
002	3,411	3,411	6	2 2 1	2,849		
210	3,385			022	2.738	2 7 3 5	11
				211	2,732\$	2,135	11

Détermination de la structure

La totalité des positions atomiques de cet arrangement ont été trouvées à l'aide d'une fonction tridimensionnelle de Patterson. Une série d'affinement, effectuée à partir de ces positions, amènent le facteur R à la valeur de 0,04 pour l'ensemble des mesures et conduisent aux coordonnées atomiques consignées dans le Tableau 2. Le Tableau 3 mentionne les longueurs et directions des axes des ellipsoïdes de vibration thermique.*

Description de la structure

La Fig. 1 représente la projection de la structure sur le plan *ab*. La maille renferme deux groupements P_3O_9 , se déduisant l'un de l'autre par centrosymétrie. Les distances et les angles, trouvés ici dans les anions P_3O_9 (Tableau 4) sont comparables à ceux rencontrés dans d'autres structures de trimétaphosphates. Les atomes de cadmium, placés sur des centres de symétrie, ont un voisinage octaédrique classique (Tableau 4 et Fig. 1) composé par deux molécules d'eau et par quatre atomes d'oxygène de type O(Eij) qui ne sont liés qu'à un seul atome de phosphore. Les atomes de cadmium assurent la cohésion des divers groupements P_3O_9 uniquement suivant la direction **c**, tandis que les atomes de potassium le font dans les trois directions de l'espace.

* Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32940: 30 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 2. Coordonnées atomiques (×10⁴) et facteurs de température isotropes

	x	у	Z	B_{eq} (Å ²)
Cd	0	0	0	1,2
P(1)	2285 (1)	279 (1)	4774 (1)	1,0
P(2)	5038 (1)	2660(1)	7726 (1)	1,2
P(3)	1973 (1)	3087 (1)	7708 (1)	0,9
K(1)	5193 (1)	2555 (1)	2675 (1)	2,2
K(2)	1183 (1)	4927 (1)	2783 (1)	2,0°
O(E12)	1916 (3)	823 (4)	2823 (4)	2,0
O(E11)	2035 (4)	8339 (4)	4989 (4)	2,1
O(E21)	5922 (4)	1653 (6)	9023 (5)	3,7
O(E22)	5814 (4)	4305 (4)	7136 (6)	3,5
O(E31)	1074 (3)	2786 (3)	9167 (4)	1,4
O(E32)	1945 (4)	4674 (4)	6712 (4)	2,1
O(L12)	4052 (3)	1261 (4)	5778 (4)	2,5
O(L23)	3720 (3)	3042 (4)	8728 (3)	1,6
O(L13)	1432 (3)	1233 (3)	6142 (4)	1,6
O(W)	8674 (3)	1780 (4)	1322 (4)	1,8

Tableau 3. Longueurs des axes principaux des ellipsoïdes de vibration des atomes $(\times 10^2)$ et orientation par rapport aux axes cristallographiques

	U (Å)	$\theta_a\left(^\circ ight)$	$\theta_b(^\circ)$	$\theta_c(^{\circ})$
Cd	13	18	104	86
eu	12	104	129	35
	11	101	42	55
P(1)	12	55	51	123
- (-)	12	145	47	97
	10	92	67	34
P(2)	15	91	21	117
- (=)	11	121	69	30
	11	31	90	77
P(3)	12	50	105	54
. (5)	11	76	26	105
	10	137	69	40
K(1)	18	52	66	71
(-)	17	139	39	74
	14	105	120	25
K (2)	18	109	35	125
(=)	16	19	84	113
	13	95		44
O(F12)	19	140	43	70
O(ETZ)	17	51	51	100
	11	81	106	23
O(F(1))	20	23	84	92
0(211)	16	104	92	4
	12	108	6	94
O(F21)	30	73	31	93
0(221)	18	134	78	32
	12	48	118	58
O(E22)	30	65	103	39
- (,	17	126	36	66
	14	47	58	119
O(E31)	16	48	105	55
	13	97	17	82
	10	138	97	36
O(E32)	20	45	81	67
	17	135	65	42
	10	91	27	123
O(L12)	26	93	29	126
	12	39	81	75
	11	128	63	40
O(L23)	19	92	17	112
	12	30	92	77
	10	120	74	26 -
O(L13)	18	79	139	45
	12	12	90	108
	11	96	49	51
O(W)	17	61	45	88
	16	78	118	30
	12	31	122	120

Tableau 4. Distances interatomiques (Å) et principaux angles de liaison (°)

Environnement du cadmium

$2 \times Cd - O(E12)$	2,267 (2)
$2 \times Cd - O(E13)$	2,346 (2)
$2 \times Cd - O(W)$	2,277 (3)

Acta Cryst. (1978). B34, 22-26

The Crystal Structure of Paramelaconite, $Cu_{12}^{2+}Cu_4^+O_{14}^+$

BY N. DATTA AND J. W. JEFFERY

Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, England

(Received 28 July 1975; accepted 6 July 1977)

Paramelaconite is an oxygen-deficient tetragonal copper oxide, space group $I4_1/amd$, with unit-cell dimensions a = 5.817, c = 9.893 Å and contents $Cu_{16}^{2+} 2_x Cu_{2x}^* O_{16-x}$ where x = 1.85. Its structure has been obtained by Patterson synthesis and least-squares refinement of three-dimensional intensity data (R = 8.3%) collected from spherical crystals using an integrating Weissenberg camera. The atomic arrangement is similar to that in tenorite, a cupric oxide. The relationship between the two structures is discussed. The appearance of a few weak satellite reflections is suggestive of ordering of oxygen vacancies.

Introduction

The rare mineral paramelaconite, an oxide of copper, was exhaustively investigated by Frondel (1941). He

showed, from chemical analysis, density, cell size and space-group considerations that its ideal composition is approximately $Cu_{16}O_{16}$ and the real chemical composition is approximately $Cu_{16}O_{14}$. The observed cell contents are represented by a general formula $Cu_{16-2x}^2Cu_{2x}^2O_{16-x}$ where x = 1.85. The mineral is therefore a cupric oxide (CuO) with an oxygen defect structure in which the omission of O atoms is compensated by the appearance of cuprous ions in place of

^{*} Dr Naryan Datta's illness and untimely death have delayed the amendments to the original draft of this paper. Part of this paper is condensed from a section of his thesis accepted by London University for the degree of PhD (Datta, 1970).